
Recursion, Induction, and Other Demons

Recursion, Induction, and Other Demons

César A. Muñoz
in collaboration with Anthony Narkawicz and Paul Miner

NASA Langley Research Center
Cesar.A.Munoz@nasa.gov

1



Recursion, Induction, and Other Demons

Outline

Recursive Definitions

Induction Proofs

Induction-Free Induction

Recursive Judgements

For Loops

Inductive Definitions

Mutual Recursion and Higher-Order Recursion

Inductive Abstract Data Types

2



Recursion, Induction, and Other Demons

Recursive Definitions

Recursive Definitions in PVS

Suppose we want to define a function to sum the first n natural
numbers:

sum(n) =
n∑

i=0

i .

In PVS:

sum(n): RECURSIVE nat =
IF n = 0 THEN 0 ELSE n + sum(n - 1) ENDIF
MEASURE n

3



Recursion, Induction, and Other Demons

Recursive Definitions

Functions in PVS are Total

Two Type Correctness Conditions(TCCs):

I The argument for the recursive call is a natural number.

% Subtype TCC generated for n - 1
% expected type nat

sum_TCC1: OBLIGATION FORALL (n: nat):
NOT n = 0 IMPLIES n - 1 >= 0;

I The recursion terminates.

% Termination TCC generated for sum(n - 1)
sum_TCC2: OBLIGATION FORALL (n: nat):
NOT n = 0 IMPLIES n - 1 < n;

4



Recursion, Induction, and Other Demons

Recursive Definitions

A Simple Property of Sum

We would like to prove the following closed form solution to sum:

n∑

i=0

i =
n(n + 1)

2
.

In PVS:

closed_form: THEOREM
sum(n) = (n * (n + 1)) / 2

5



Recursion, Induction, and Other Demons

Induction Proofs

Induction Proofs

(induct/$ var &optional (fnum 1) name) :
Selects an induction scheme according to the type of VAR
in FNUM and uses formula FNUM to formulate an induction
predicate, then simplifies yielding base and induction
cases. The induction scheme can be explicitly supplied
as the optional NAME argument.

6



Recursion, Induction, and Other Demons

Induction Proofs

Induction Schemes from the Prelude

% Weak induction on naturals.
nat_induction: LEMMA

(p(0) AND (FORALL j: p(j) IMPLIES p(j+1)))
IMPLIES (FORALL i: p(i))

% Strong induction on naturals.
NAT_induction: LEMMA

(FORALL j: (FORALL k: k < j IMPLIES p(k)) IMPLIES p(j))
IMPLIES (FORALL i: p(i))

7



Recursion, Induction, and Other Demons

Induction Proofs

Proof by Induction

closed_form :

|-------
{1} FORALL (n: nat): sum(n) = (n * (n + 1)) / 2

Rule? (induct "n")
Inducting on n on formula 1,
this yields 2 subgoals:

8



Recursion, Induction, and Other Demons

Induction Proofs

Base Case

closed_form.1 :

|-------
{1} sum(0) = (0 * (0 + 1)) / 2

Rule? (grind)
Rewriting with sum
Trying repeated skolemization, instantiation, and if-lifting,

This completes the proof of closed_form.1.

9



Recursion, Induction, and Other Demons

Induction Proofs

Induction Step

closed_form.2 :

|-------
{1} FORALL j:

sum(j) = (j * (j + 1)) / 2 IMPLIES
sum(j + 1) = ((j + 1) * (j + 1 + 1)) / 2

Rule? (skosimp*)
Repeatedly Skolemizing and flattening, this simplifies to:
closed_form.2 :

{-1} sum(j!1) = (j!1 * (j!1 + 1)) / 2
|-------

{1} sum(j!1 + 1) = ((j!1 + 1) * (j!1 + 1 + 1)) / 2

Rule? (undo)y

10



Recursion, Induction, and Other Demons

Induction Proofs

closed_form.2 :

|-------
{1} FORALL j:

sum(j) = (j * (j + 1)) / 2 IMPLIES
sum(j + 1) = ((j + 1) * (j + 1 + 1)) / 2

Rule? (skeep)

Skolemizing with the names of the bound variables,
this simplifies to:
closed_form.2 :

{-1} sum(j) = (j * (j + 1)) / 2
|-------

{1} sum(j + 1) = ((j + 1) * (j + 1 + 1)) / 2

11



Recursion, Induction, and Other Demons

Induction Proofs

{-1} sum(j) = (j * (j + 1)) / 2
|-------

{1} sum(j + 1) = ((j + 1) * (j + 1 + 1)) / 2

Rule? (expand "sum" +)
Expanding the definition of sum,
this simplifies to:
closed_form.2 :

[-1] sum(j) = (j * (j + 1)) / 2
|-------

{1} 1 + sum(j) + j = (2 + j + (j * j + 2 * j)) / 2

12



Recursion, Induction, and Other Demons

Induction Proofs

[-1] sum(j) = (j * (j + 1)) / 2
|-------

{1} 1 + sum(j) + j = (2 + j + (j * j + 2 * j)) / 2

Rule? (assert)
Simplifying, rewriting, and recording with decision
procedures,

This completes the proof of closed_form.2.

Q.E.D.

13



Recursion, Induction, and Other Demons

Induction Proofs

Automated Simple Induction Proofs

|-------
{1} FORALL (n: nat): sum(n) = (n * (n + 1)) / 2

Rule? (induct-and-simplify "n")
Rewriting with sum
Rewriting with sum
By induction on n, and by repeatedly rewriting and
simplifying,
Q.E.D.

14



Recursion, Induction, and Other Demons

Induction Proofs

Limitations of automation

Consider the nth factorial:

n! =

{
1, ifn = 0
n(n − 1)!, otherwise.

In PVS:

factorial(n : nat): RECURSIVE posnat =
IF n = 0 THEN 1 ELSE n * factorial(n - 1) ENDIF

MEASURE n

15



Recursion, Induction, and Other Demons

Induction Proofs

A Simple Property of Factorial

∀x > 3 : x! > 2x

In PVS:

x: var above(3)

factorial_gt_expt2_above3: LEMMA
factorial(x) > 2 ^ x

16



Recursion, Induction, and Other Demons

Induction Proofs

A Series of Unfortunate Events . . .

factorial_gt_expt2_above3 :

|-------
{1} FORALL (x: above(3)): factorial(x) > 2 ^ x

Rule? (induct-and-simplify "x")
Rewriting with factorial
Rewriting with factorial
Rewriting with factorial
...

17



Recursion, Induction, and Other Demons

Induction Proofs

Whenever the theorem prover falls into an infinite loop, the Emacs
command C-c C-c will force PVS to break into Lisp. The Lisp
command (restore) will return to the PVS state prior to the last
proof command.

...
Rewriting with factorial
Error: Received signal number 2 (Interrupt)
[condition type: interrupt-signal]

...
[1c] pvs(87): (restore)
factorial_gt_expt2_above3 :

|-------
{1} FORALL (x: above(3)): factorial(x) > 2 ^ x

Rule?

18



Recursion, Induction, and Other Demons

Induction Proofs

Whenever the theorem prover falls into an infinite loop, the Emacs
command C-c C-c will force PVS to break into Lisp. The Lisp
command (restore) will return to the PVS state prior to the last
proof command.

...
Rewriting with factorial
Error: Received signal number 2 (Interrupt)
[condition type: interrupt-signal]

...
[1c] pvs(87): (restore)
factorial_gt_expt2_above3 :

|-------
{1} FORALL (x: above(3)): factorial(x) > 2 ^ x

Rule?

19



Recursion, Induction, and Other Demons

Induction Proofs

Exercise 1

Prove this formula in PVS:

∀x > 3 : x! > 2x

Hint: See Exercises/Lecture-2.pvs.

20



Recursion, Induction, and Other Demons

Induction-Free Induction

Induction-Free Induction

Consider a common implementation of the n-th factorial in an
imperative programming language:

/* Pre: n >= 0 */

int a = 1;
for (int i=0;i < n;i++) {

/* Inv: a = i! */
a = a*(i+1);

}

/* Post: a = n! */

21



Recursion, Induction, and Other Demons

Induction-Free Induction

In PVS . . .

fact_it(n:nat,i:upto(n),a:posnat) : RECURSIVE posnat =
IF i = n THEN a
ELSE fact_it(n,i+1,a*(i+1))
ENDIF

MEASURE n-i

fact_it_correctness : THEOREM
fact_it(n,0,1) = factorial(n)

22



Recursion, Induction, and Other Demons

Induction-Free Induction

Proving fact it correctness

|-------
{1} FORALL (n: nat): fact_it(n, 0, 1) = factorial(n)

Rule? (induct-and-simplify "n")
this simplifies to:
fact_it_correctness :

{-1} fact_it(j!1, 0, 1) = factorial(j!1)
|-------

{1} fact_it(1 + j!1, 1, 1) =
factorial(j!1) + factorial(j!1) * j!1

The proof by (explicit) induction requires an inductive proof of an
auxiliary lemma.

23



Recursion, Induction, and Other Demons

Induction-Free Induction

Induction-Free Induction By Predicate Subtyping

fact_it(n:nat,i:upto(n),(a:posnat|a=factorial(i))) :
RECURSIVE {b:posnat | b=factorial(n)} =
IF i = n THEN a
ELSE fact_it(n,i+1,a*(i+1))
ENDIF

MEASURE n-i

n : VAR nat

fact_it_correctness : LEMMA
fact_it(n,0,1) = factorial(n)

%|- fact_t_correctness : PROOF (skeep) (assert) QED

24



Recursion, Induction, and Other Demons

Induction-Free Induction

There is No Free Lunch

fact_it_TCC4 :
|-------

{1} FORALL (n: nat, i: upto(n),
(a: nat | a = factorial(i))):
NOT i = n IMPLIES a * (i + 1) = factorial(1 + i)

Rule? (skeep :preds? t)
fact_it_TCC4 :
{-1} n >= 0
{-2} i <= n
{-3} a = factorial(i)

|-------
{1} i = n
{2} a * (i + 1) = factorial(1 + i)

25



Recursion, Induction, and Other Demons

Induction-Free Induction

Rule? (expand "factorial" 2)
fact_it_TCC4 :

[-1] n >= 0
[-2] i <= n
[-3] a = factorial(i)

|-------
[1] i = n
{2} a * i + a = factorial(i) + factorial(i) * i

Rule? (assert)
Q.E.D.

26



Recursion, Induction, and Other Demons

Induction-Free Induction

You Can Also Pay at the Exit

fact_it2(n:nat,i:upto(n),a:posnat) : RECURSIVE
{b:posnat | b = a*factorial(n)/factorial(i)} =
IF i = n THEN a
ELSE fact_it2(n,i+1,a*(i+1))
ENDIF

MEASURE n-i

fact_it2_correctness : LEMMA
fact_it2(n,0,1) = factorial(n)

27



Recursion, Induction, and Other Demons

Induction-Free Induction

|-------
{1} FORALL (n: nat): fact_it2(n, 0, 1) = factorial(n)

Rule? (skeep)

|-------
{1} fact_it2(n, 0, 1) = factorial(n)

Rule? (typepred "fact_it2(n,0,1)")

{-1} fact_it2(n, 0, 1) > 0
{-2} fact_it2(n, 0, 1) = 1 * factorial(n) / factorial(0)

|-------
[1] fact_it2(n, 0, 1) = factorial(n)

28



Recursion, Induction, and Other Demons

Induction-Free Induction

Rule? (expand "factorial" -2 2)

[-1] fact_it2(n, 0, 1) > 0
{-2} fact_it2(n, 0, 1) = 1 * factorial(n) / 1

|-------
[1] fact_it2(n, 0, 1) = factorial(n)

Rule? (assert)
Q.E.D.

29



Recursion, Induction, and Other Demons

Induction-Free Induction

But The Price is Higher

fact_it2_TCC5: OBLIGATION
FORALL (n: nat, i: upto(n),

v:
[d1: z: [n: nat, upto(n), posnat] |

z‘1 - z‘2 < n - i ->
b: posnat | b = d1‘3 * factorial(d1‘1) /
factorial(d1‘2)],

a: posnat):
NOT i = n IMPLIES
v(n, i + 1, a * (i + 1)) =
a * factorial(n) / factorial(i);

30



Recursion, Induction, and Other Demons

Induction-Free Induction

Rule? (skeep :preds? t)

Skolemizing with the names of the bound variables,
this simplifies to:
fact_it2_TCC5 :

{-1} n >= 0
{-2} i <= n
{-3} a > 0

|-------
{1} i = n
{2} v(n, i + 1, a * (i + 1)) = a * factorial(n) /

factorial(i)

31



Recursion, Induction, and Other Demons

Induction-Free Induction

Rule? (name-replace "HI" "v(n, i + 1, a * (i + 1))")
Using HI to name and replace v(n, i + 1, a * (i + 1)),
this yields 2 subgoals:
fact_it2_TCC5.1 :

[-1] n >= 0
[-2] i <= n
[-3] a > 0

|-------
[1] i = n
{2} HI = a * factorial(n) / factorial(i)

32



Recursion, Induction, and Other Demons

Induction-Free Induction

Rule? (typepred "HI")
Adding type constraints for HI,
this simplifies to:
fact_it2_TCC5.1 :

{-1} HI > 0
{-2} HI = (factorial(n) * a + factorial(n) * a * i) /

factorial(1 + i)
[-3] n >= 0
[-4] i <= n
[-5] a > 0

|-------
[1] i = n
[2] HI = a * factorial(n) / factorial(i)

33



Recursion, Induction, and Other Demons

Induction-Free Induction

Rule? (expand "factorial" -2 3)
Expanding the definition of factorial,
this simplifies to:
fact_it2_TCC5.1 :

[-1] HI > 0
{-2} HI =

(factorial(n) * a + factorial(n) * a * i) /
(factorial(i) + factorial(i) * i)

[-3] n >= 0
[-4] i <= n
[-5] a > 0

|-------
[1] i = n
[2] HI = a * factorial(n) / factorial(i)

34



Recursion, Induction, and Other Demons

Induction-Free Induction

Rule? (replaces -2)

Iterating REPLACE,
this simplifies to:
fact_it2_TCC5.1 :

{-1} (factorial(n) * a + factorial(n) * a * i) /
(factorial(i) + factorial(i) * i)
> 0

{-2} n >= 0
{-3} i <= n
{-4} a > 0

|-------
{1} i = n
{2} (factorial(n) * a + factorial(n) * a * i) /

(factorial(i) + factorial(i) * i)
= a * factorial(n) / factorial(i)

35



Recursion, Induction, and Other Demons

Induction-Free Induction

Rule? (grind-reals)
Rewriting with pos_div_gt
Rewriting with cross_mult

Applying GRIND-REALS,

This completes the proof of fact_it2_TCC5.1.

I All the other subgoals are discharged by (assert).

36



Recursion, Induction, and Other Demons

Induction-Free Induction

Induction-Free Induction

+ Induction scheme based the recursive definition of the
function not on the measure function!.

+ Proofs exploit type-checker power.

- Some TCCs look scary (but they are easy to tame)

- If you modify the definitions, the TCCs get re-arranged (be
careful or you can lose your proof)

? Can this method be used when the recursive function was not
originally typed that way?

37



Recursion, Induction, and Other Demons

Recursive Judgements

Recursive Judgments

Consider the Ackermann function:

A(m.n) =





n + 1, if m = 0
A(m − 1, 1), if m > 0 and n = 0
A(m − 1, A(m, n − 1)), otherwise.

In PVS:

ack(m,n) : RECURSIVE nat =
IF m = 0 THEN n+1
ELSIF n = 0 THEN ack(m-1,1)
ELSE ack(m-1,ack(m,n-1))
ENDIF

MEASURE ?lex2(m,n)

38



Recursion, Induction, and Other Demons

Recursive Judgements

Exercise 2

Prove:
∀m, n : A(m, n) > m + n

In PVS:

ack_simple_property : THEOREM
FORALL(m,n): ack(m,n) > m+n

Hint: You may need two inductions!

39



Recursion, Induction, and Other Demons

Recursive Judgements

Recursive Judgements

ack_gt_m_n : RECURSIVE JUDGEMENT
ack(m,n) HAS_TYPE above(m+n)

The type checker generates TCCs corresponding to the recursive
definition of the type-restricted version of ack, e.g.,

ack_gt_m_n_TCC1: OBLIGATION FORALL (m, n: nat): m=0 IMPLIES
n+1 > m+n;

ack_gt_m_n_TCC3: OBLIGATION
FORALL (v: [d: [nat, nat] -> above(d‘1+d‘2)], m, n: nat):

n=0 AND NOT m=0 IMPLIES v(m-1, 1) > m+n;

ack_gt_m_n_TCC7: OBLIGATION
FORALL (v: [d: [nat, nat] -> above(d‘1+d‘2)], m, n: nat):

NOT n=0 AND NOT m=0 IMPLIES v(m-1, v(m, n-1)) > m+n;

40



Recursion, Induction, and Other Demons

Recursive Judgements

PVS Automatically Uses Judgements

Most of these TCCs are automatically discharged by the type
checker (in this case, all of them). Furthermore, the theorem
prover automatically uses judgements:

ack_simple_property :

|-------
{1} FORALL (m, n): ack(m, n) > max(m, n)

Rule? (grind)
Rewriting with max
Trying repeated skolemization, instantiation, and if-lifting,
Q.E.D.

41



Recursion, Induction, and Other Demons

For Loops

For Loops

/* Pre: n >= 0 */
int a = 1;
for (int i=0;i < n;i++) {

/* Inv: a = i! */
a = a*(i+1);

}
/* Post: a = n! */

In PVS:

IMPORTING structures@for_iterate

fact_for(n:nat) : real =
for[real](0,n-1,1,LAMBDA(i:below(n),a:real):

a*(i+1))

42



Recursion, Induction, and Other Demons

For Loops

Proving Correctness of For Loops
Consider the following implementation of factorial:

fact_for : THEOREM
fact_for(n) = factorial(n)

fact_for :

|-------
{1} FORALL (n: nat): fact_for(n) = factorial(n)

Rule? (skeep)(expand "fact_for")

fact_for :

|-------
{1} for[real](0,n-1,1,LAMBDA (i:below(n),a:real):a+a*i) =

factorial(n)

43



Recursion, Induction, and Other Demons

For Loops

Rule? (lemma "for_induction[real]")
Applying for_induction[real]
this simplifies to:
fact_for :

{-1} FORALL (i, j: int, a: real, f: ForBody[real](i, j),
inv: PRED[[UpTo[real](1 + j - i), real]]):

(inv(0, a) AND
(FORALL (k: subrange(0, j - i), ak: real):

inv(k, ak) IMPLIES inv(k + 1, f(i + k, ak))))
IMPLIES inv(j - i + 1, for(i, j, a, f))

|-------
[1] for[real](0,n-1,1,LAMBDA (i:below(n),a:real):a+a*i) =

factorial(n)

44



Recursion, Induction, and Other Demons

For Loops

Rule? (inst?)
Instantiating quantified variables,
this yields 2 subgoals:
fact_for.1 :

{-1} FORALL (inv:PRED[[UpTo[real](n)real]]):
(inv(0,1) AND

(FORALL (k:subrange(0,n-1),ak:real):
inv(k,ak) IMPLIES inv(k+1,ak+ak*(0+k))))

IMPLIES
inv(n,

for(0,n-1,1,LAMBDA (i:below(n),a:real):a+a*i))
|-------

[1] for[real](0,n-1,1,LAMBDA (i:below(n),a:real):a+a*i) =
factorial(n)

45



Recursion, Induction, and Other Demons

For Loops

Rule? (inst -1 "LAMBDA(i:upto(n),a:real) : a = factorial(i)")
fact_for.1.1 :

{-1} ...
|-------

[1] for[real](0,n-1,1,LAMBDA (i:below(n),a:real):a+a*i) =
factorial(n)

I The variable i in the invariant refers to the ith iteration.

I Remaining subgoals are discharged with (grind). See
Examples/Lecture-2.pvs.

46



Recursion, Induction, and Other Demons

For Loops

Exercise 3

Implement in PVS the following algorithm that finds the fastest
aircraft in the NAS:

/* Pre: nas is non empty */
ac = nas[1]
for (int i=1; i < n; i++) {
/* Inv: ac = max(ac[1..i]) */
ac = max(ac,nas[i+1]);

}
/* Post: ac = max(nas[1..n]) */

47



Recursion, Induction, and Other Demons

For Loops

Exercise 3 (cont.)

Prove the following property:

fastest_correct : THEOREM
FORALL (nas:(nonemptynas?),i:subrange(1,nas‘n)):
fastest(nas)‘gs >= nas‘seq(i)‘gs

Hint: You may need the following invariant:

LAMBDA(i:upto(nas‘n-1),ac:Aircraft):
FORALL (k:subrange(1,i+1)): ac‘gs >= nas‘seq(k)‘gs

48



Recursion, Induction, and Other Demons

Inductive Definitions

Inductive Definitions

I An inductive definition gives rules for generating members of
a set.

I An object is in the set, only if it has been generated according
to the rules.

I An inductively defined set is the smallest set closed under the
rules.

I PVS automatically generates weak and strong induction
schemes that are used by command (rule-induct
"<name>") command .

49



Recursion, Induction, and Other Demons

Inductive Definitions

Even and Odd

even(n:nat): INDUCTIVE bool =
n = 0 OR (n > 1 AND even(n - 2))

odd(n:nat): INDUCTIVE bool =
n = 1 OR (n > 1 AND odd(n - 2))

50



Recursion, Induction, and Other Demons

Inductive Definitions

Induction Schemes
The definition of even generates the following induction schemes
(use the Emacs command M-x ppe):

even_weak_induction: AXIOM
FORALL (P: [nat -> boolean]):
(FORALL (n: nat): n = 0 OR (n > 1 AND P(n - 2))
IMPLIES P(n))

IMPLIES
(FORALL (n: nat): even(n) IMPLIES P(n));

even_induction: AXIOM
FORALL (P: [nat -> boolean]):
(FORALL (n: nat):

n = 0 OR (n > 1 AND even(n - 2) AND P(n - 2))
IMPLIES P(n))

IMPLIES (FORALL (n: nat): even(n) IMPLIES P(n));

51



Recursion, Induction, and Other Demons

Inductive Definitions

Inductive Proof

even_odd :

|-------
{1} FORALL (n: nat): even(n) => odd(n + 1)

Rule? (rule-induct "even")
Applying rule induction over even, this simplifies to:
even_odd :

|-------
{1} FORALL (n: nat):

n = 0 OR (n > 1 AND odd(n - 2 + 1)) IMPLIES odd(n + 1)

The proof can then be completed using

(skosimp*)(rewrite "odd" +)(ground)

52



Recursion, Induction, and Other Demons

Mutual Recursion and Higher-Order Recursion

Mutual Recursion and Higher-Order Recursion

The predicates odd and even can be defined using a
mutual-recursion:

even?(0) = true

odd?(0) = false

odd?(1) = true

even?(n + 1) = odd?(n)

odd?(n + 1) = even?(n)

53



Recursion, Induction, and Other Demons

Mutual Recursion and Higher-Order Recursion

In PVS . . .

my_even?(n) : INDUCTIVE bool =
n = 0 OR n > 0 AND my_odd?(n-1)

my_odd?(n) : INDUCTIVE bool =
n = 1 OR n > 1 AND my_even?(n-1)

I Theses definitions don’t type-check. What is wrong with
them?

I PVS does not (directly) support mutual recursion.

54



Recursion, Induction, and Other Demons

Mutual Recursion and Higher-Order Recursion

Mutual Recursion via Higher-Order Recursion

even_f?(fodd:[nat->bool],n) : bool =
n = 0 OR
n > 0 AND fodd(n-1)

my_odd?(n) : INDUCTIVE bool =
n = 1 OR
n > 1 AND even_f?(my_odd?,n-1)

my_even?(n) : bool =
even_f?(my_odd?,n)

The only recursive definition is my odd?

55



Recursion, Induction, and Other Demons

Mutual Recursion and Higher-Order Recursion

Exercise 4

Prove the following equivalences:

my_even_my_odd : LEMMA
my_even?(n) = even(n) AND
my_odd?(n) = odd(n)

Hint: Use induction on n and lemmas even odd and odd even
(see Exercises/Lecture-2.pvs).

56



Recursion, Induction, and Other Demons

Inductive Abstract Data Types

Inductive Abstract Data Types

PVS supports ADTs (constructors, recognizers, selectors):

Tree : DATATYPE
BEGIN

nulltree : nulltree?
constree(val:int,left:Tree,right:Tree) : constree?

END Tree

57



Recursion, Induction, and Other Demons

Inductive Abstract Data Types

Inductive Abstract Data Types

For each datatype declaration, PVS automatically generates a
well-founded structural order <<, an induction scheme, and . . . (see
the automatically generated file Tree adt.pvs)

Tree_induction: AXIOM
FORALL (p: [Tree -> boolean]):
(p(nulltree) AND

(FORALL (constree1_var: int, constree2_var: Tree,
constree3_var: Tree):

p(constree2_var) AND p(constree3_var) IMPLIES
p(constree(constree1_var, constree2_var,

constree3_var))))
IMPLIES (FORALL (Tree_var: Tree): p(Tree_var));

58



Recursion, Induction, and Other Demons

Inductive Abstract Data Types

Pattern Matching Support

height(t:Tree) : RECURSIVE nat =
CASES t OF
constree(v,l,r): 1+max(height(l),height(r))
ELSE 0

ENDCASES
MEASURE t BY <<

59



Recursion, Induction, and Other Demons

Inductive Abstract Data Types

ADT are First Class Terms

monotonetree?(t:Tree): INDUCTIVE bool =
nulltree?(t) OR
(constree?(left(t)) IMPLIES val(t) > val(left(t))) AND
(constree?(right(t)) IMPLIES val(t) > val(right(t))) AND
monotonetree?(left(t)) AND
monotonetree?(right(t))

consotonetree?(t:Tree): MACRO bool =
constree?(t) AND monotonetree?(t)

60



Recursion, Induction, and Other Demons

Inductive Abstract Data Types

Exercise 5

Prove the following property (see Exercises/Lecture-2.pvs):

height_monotone: THEOREM
FORALL (t:(consotonetree?)):
height(t) <= val(t)+1

61


